2024 Lepidoptera Surveys

on

Bayfield County Forestry Lands

Figure 1. Catocala concumbens, Barnes Barrens (30 July 2024).

Kyle E. Johnson

Honorary Fellow, University of Wisconsin-Madison 5842 Wedgewood Drive, Little Suamico, WI, 54141 <u>kejohnson4@wisc.edu</u>

Ryne D. Rutherford

Biophilia, LLC, 32104 W. State Highway M-64, Ontonagon, MI 49953 <u>biophilianature@gmail.com</u>

Acknowledgements

This project was financially supported by Bayfield County Forestry and Parks Department.

I thank Mike Amman (Bayfield County Forestry) for approaching us with this project and joining KEJ in the field (and fixing a sudden flat tire!). Steve Bransky and Les Ferge lent equipment for night sampling.

Study Purpose

The purpose of this study was to gather baseline biodiversity data on Lepidoptera (moths and butterflies) from Barnes Barrens and other Bayfield County forestry lands in northwestern Wisconsin. Emphasis was on barrens habitats, species of conservation concern, and management considerations. A secondary goal was to explore the value of managed "wildlife openings" on Bayfield County forestry lands.

Study Sites

Figure 2. Study sites and ecological landscapes in northwestern Wisconsin. The Northwest Sands are highlighted light blue.

Barnes Barrens (Figures 3, 4,) is a large barrens complex featuring various types of open and semiwooded barrens, as well as dry pine-oak woodlands and pine plantations. The barrens have floristic elements of boreal pine barrens (e.g. ericaceous shrubs, poverty grass, *Cladina* lichens) and transition zone prairie-barrens (e.g. oaks, New Jersey tea, big bluestem). The barrens core area (Figure 3) is largely treeless, with scattered deciduous brush, including abundant oaks and prairie willow. The barrens are managed by a mix of prescribed fire (esp. the core) and mechanical treatments (mowing, logging).

Banana Belt Pocket Barrens (Figures 5, 28), named after Banana Belt Road, is a series of eleven "pocket barrens" mowed wildlife openings within stands of dry pine-aspen-oak dominated woodland. The barrens vegetation is mostly akin to boreal pine barrens but also has some prairie elements (e.g. big bluestem). The site lies 4 miles north of the Barnes Barrens core and serves as a link to the Bass Lake Barrens 2.6 miles to the north/northeast.

Figure 3. Barnes Barrens open "core" area (30 July 2024). Sweet fern-blueberry-graminoid barrens with sparse oak-prairie willow brush. Prairie elements include plentiful big bluestem. This section (near 46.44688°N 91.52058°W) is particularly good habitat for barrens Lepidoptera.

Figure 4. Barrens opening (with abundant big bluestem) in dry jack pine (oak) woodland, Barnes Barrens (30 July 2024).

Figure 5. Low graminoid-blueberry (bracken) barrens in managed wildlife opening, Banana Belt Pocket Barrens (28 September 2024). The low vegetation stature looks promising for many rare barrens Lepidoptera.

Methods

Barnes Barrens was surveyed in May, July, and September of 2024; one set of wildlife openings was surveyed in September (Table 1). Surveys by RDR in May were visual-based diurnal surveys (aided with close-focusing binoculars and netting) with photographic documentation of noteworthy species. Surveys by KEJ in July and September were voucher specimen-based surveys, supplemented by photographs. Methods included diurnal searches, MV (mercury vapor) sheets (Figure 6), UV light traps, fermenting banana-brown sugar baits, and pheromone lures (combined with diurnal surveys in July and September). Emphasis was on a variety of open and semi-wooded barrens, particularly those stands likely to yield barrens specialists. At least one voucher specimen per species was kept for each site, for each main method (diurnal search, light, and bait). To document more species (and reduce specimen backlog) a synoptic set of species was collected from the MV sheet on September 27; only new and/or significant species were documented from the additional light traps. Specimens will primarily be deposited at the University of Wisconsin-Madison Insect Research Collection (WIRC) with other research collections as secondary repositories (see specimen data file). Both of our surveys covered a wide variety of barrens (from open to woodland), with emphasis on areas likely to yield barrens specialists. All photographs were taken by KEJ except for Figure 9 by RDR.

Date	Site	Lat/Lon	Method	Habitat
May 14	Barnes Barrens	46.44398°N	diurnal search	open, semi-treed, and
		91.53129°W		wooded barrens
July 30	Barnes Barrens	46.44267°N	diurnal search	open, semi-treed, and
		91.50451°W		wooded barrens
July 30	Barnes Barrens	46.44701°N	MV sheet	open and semi-treed
		91.52081°W		barrens
July 30	Barnes Barrens	46.44580°N	rotten banana-	open, semi-treed, and
		91.52100°W	brown sugar bait	wooded barrens
Sept. 27	Barnes Barrens	46.44688°N	diurnal search	open, semi-treed, and
		91.52058°W		wooded barrens
Sept. 27	Barnes Barrens	6.44503°N	MV sheet	open, semi-treed, and
		91.52097°W		wooded barrens
Sept. 27	Barnes Barrens	46.44466°N	rotten banana-	open, semi-treed, and
		91.52322°W	brown sugar bait	wooded barrens
Sept. 27	Barnes Barrens	46.44473°N	UV light trap	open and semi-treed
		91.52027°W		barrens
Sept. 27	Barnes Barrens	46.44688°N	UV light trap	open and semi-treed
		91.52058°W		barrens
Sept. 28	Barnes Barrens	46.44688°N	diurnal search	open and semi-treed
		91.52058°W		barrens
Sept. 28	Banana Belt Pocket	46.50488°N	diurnal search	pocket barrens
	Barrens	91.52515°W		managed wildlife
				openings, dry mixed
				woodland

Table 1. Sampling efforts in 2024. Note: diurnal searches are within a 2km radius of point.

Figure 6. MV sheet, Barnes Barrens (30 July 2024).

Results

Over **141 species** of Lepidoptera were recorded (Table 2; see also specimen data file); further identifications will increase this number. Among these are at least 25 species affiliated with barrens and related habitats (e.g. dunes, savannas, prairies), and nine of these are – to the best of our knowledge – known solely from these habitats in the Midwest (see Table 2). Species worthy of conservation mention include *Carmenta anthracipennis, Euchloe olympia, Bandera binotella, Prionapteryx nebulifera, Acronicta lithospila, Chytonix sensilis*, and *Chaetaglaea cerata*.

Carmenta anthracipennis is an infrequently encountered species in the Midwest, in part due to its elusive nature (most records are from pheromone lures). It is a blazing star (*Liatris*) specialist and has been found in dry prairies and barrens. It is worth considering for a Species of Greatest Conservation Need (SGCN) in Wisconsin.

Euchloe olympia occurs in a variety of dry, typically sandy habitats such as barrens, sand prairies, savannas, and dunes. It is quite common/widespread in Wisconsin's Central Sand Plains and Central Sand Hills ecological landscapes. In the Northwest Sands it is common/widespread in Burnett County but becomes much less common northeastward into Bayfield County.

Bandera binotella is an infrequently encountered species in the Midwest, occurring most commonly on dunes but also in sand prairie and barrens. It is worth considering for SGCN.

Prionapteryx nebulifera is an infrequently encountered species in the Midwest, occurring most commonly on dunes but also in barrens and some dry prairies. It is worth considering for SGCN.

Acronicta lithospila is an infrequently encountered species in the Midwest, occurring most commonly on barrens and dry savannas. It is worth considering for SGCN.

Chytonix sensilis is known from barrens, savannas, and dunes in the Midwest. Barnes Barrens supports a robust population. It is worth considering for SGCN.

Chaetaglaea cerata is known from barrens – and larger, open barrens in particular – in Wisconsin and Michigan. In western Minnesota it also occurs in dry prairies. It does not appear to persist in small barrens openings, unlike many other barrens specialists. The robust population at Barnes Barrens is a sign of restoration success.

Many lepidopterists found that 2024 was one of the worst years in memory for Lepidoptera diversity/abundance. Late fall was particularly poor, with normally abundant species (e.g. *Sunira bicolorago*) sparse or absent from samples. Therefore, the lack of certain "high quality" barrens indicators (e.g. *Psectraglaea carnosa*, the Pink Sallow) should be viewed cautiously. Also, the single species (*Nomophila nearctica*) documented from the Banana Belt Pocket Barrens is not a signal of habitat quality, just of the poor season. The 25 barrens-affiliated species documented from Barnes Barrens are an encouraging sign, and proof that the barrens habitat management is having some success.

Figure 7. Acleris minuta, Barnes Barrens (27 September 2024)

Figure 8. Anacampsis innocuella, Barnes Barrens (30 July 2024)

Figure 9. Euchloe olympia (Olympia Marble), Barnes Barrens (14 May 2024); photo by RDR

Figure 10. Satyrium titus (Coral Hairstreak), Barnes Barrens (30 July 2024)

Figure 11. Satyrium edwardsii (Edward's Hairstreak), Barnes Barrens (30 July 2024)

Figure 12. Prionapteryx nebulifera, Barnes Barrens (30 July 2024)

Figure 13. Hemileuca nevadensis, Barnes Barrens (28 September 2024)

Figure 14. Smerinthus jamaicensis, Barnes Barrens (30 July 2024)

Figure 15. Cyclophora pendulinaria, Barnes Barrens (30 July 2024)

Figure 16. Pheosia rimosa, Barnes Barrens (30 July 2024)

Figure 17. Apantesis parthenice, Barnes Barrens (30 July 2024)

Figure 18. Catocala antinympha, Barnes Barrens (30 July 2024)

Figure 19. Schinia florida, Barnes Barrens (30 July 2024)

Figure 20. Chaetaglaea cerata, Barnes Barrens (30 July 2024)

Figure 21. Xanthia tatago, Barnes Barrens (27 September 2024)

Figure 22. Agrotis ipsilon, Barnes Barrens (27 September 2024)

 Table 2.
 Lepidoptera documented in 2024 (141 taxa total).

Species = only known from barrens, savanna, prairie, and/or dune habitat in Wisconsin.

Species = most frequently encountered in such habitats, but not completely restricted to them. Species = illustrated above.

Habitat comments are based largely on personal experience and discussion with other researchers, and in some instances are tentative. For detailed data (e.g. lat/lon) see specimen data file (sight/photo records by RDR are noted in the comments column).

Family	Species	Comments
Gracillariidae	Caloptilia vacciniella	blueberry (Vaccinium) specialist common in
		barrens and peatlands
Tortricidae	Acleris obtusana	
Tortricidae	Acleris oxycoccana	most common in peatlands, but some
		records from barrens
Tortricidae	Acleris minuta	most records from barrens; much less
		common in peatlands
Tortricidae	Acleris sp.	
Tortricidae	Decodes macdunnoughi	
Tortricidae	Choristoneura pinus	
Tortricidae	Archips fervidana	
Tortricidae	Clepsis peritana	
Tortricidae	Sparganothis sulfureana	
Tortricidae	Sparganothis tristriata	
Tortricidae	Sparganothis unifasciana	most frequently encountered in prairies,
		savannas, and barrens
Tortricidae	Ancylis diminuatana	
Tortricidae	Eucosma ochroterminana	
Tortricidae	Eucosma tomonana	

Family	Species	Comments
Tortricidae	Pelochrista palabundana	Midwestern records generally associated
		with barrens and dry prairie; includes
		barrens elements in dry northern woodland
		openings
Tortricidae	Pelochrista cataclystiana	
Tortricidae	Cydia latiferreana	
Tortricidae	Unidentified Tortricidae	
Sesiidae	Carmenta anthracipennis	blazing star (<i>Liatris</i>) specialist; a seldom
		encountered species
Gelechiidae	Anacampsis innocuella	
Gelechiidae	Anacampsis niveopulvella	
Gelechiidae	Chionodes thoraceochrella	
Gelechiidae	Unidentified Gelechiidae	
Coleophoridae	Coleophora sp.	
Hesperiidae	Erynnis sp. (unidentified	sight record by RDR
	Duskywing)	
Hesperiidae	Euphyes vestris (Dun Skipper)	
Hesperiidae	Anatrytone logan (Delaware	grassland generalist; formerly common in
	Skipper)	old field as well as prairies and some
		barrens, but declining in recent years;
		Barnes is a nice northerly record
Pieridae	<i>Pyrisitia lisa</i> (Little Yellow)	notable southern stray this far north
Pieridae	Euchloe olympia (Olympia	photo record by RDR; rock cress
	Marble)	(Arabidopsis) specialist; most records from
		sand prairies, barrens, savannas, and dunes
Lycaenidae	Lycaena hypophlaeas (American Copper)	
Lycaenidae	<i>Callophrys niphon</i> (Eastern Pine Elfin)	sight record by RDR; pine specialist
Lycaenidae	Callophrys polios (Hoary Elfin)	sight record by RDR; bearberry
		(Arctostaphylos uva-ursi) specialist in
		barrens (including openings in dry
		coniferous woodlands) and sometimes
		dunes
Lycaenidae	Satyrium titus (Coral Hairstreak)	
Lycaenidae	Satyrium edwardsii (Edward's	most common in dry scrub oak habitats
	Hairstreak)	
Nymphalidae	Boloria bellona (Meadow Fritillary)	
Nymphalidae	Argynnis aphrodite (Aphrodite	occurs in a variety of open, often dry
	Fritillary)	habitat, but is particularly common in
		barrens and dry praries
Nymphalidae	Vanessa virginiensis (American Lady)	sight record by RDR
Nymphalidae	<i>Junonia coenia</i> (Common	southern stray
	Buckeye)	
Nymphalidae	Cercyonis pegala (Common Wood	
	Nymph)	

Family	Species	Comments
Pyralidae	Acrobasis comptoniella	most common in barrens with sweet fern
		(Comptonia peregrina), but also wetlands
		with sweet gale (Myrica gale)
Pyralidae	Bandera binotella	particularly common on dunes; less
		frequent in non-dune dry prairies and pine
		barrens
Pyralidae	Peoria approximella	locally common in dry and/or sandy
		habitats, including prairies, dunes, and
		barrens
Pyralidae	Unidentified Pyralidae	
Crambidae	Udea rubigalis	
Crambidae	Herpetogramma aquilonalis	
Crambidae	Nomophila nearctica	
Crambidae	Parapoynx badiusalis	aquatic specialist
Crambidae	Parapoynx allionealis	aquatic specialist
Crambidae	Scoparia biplagialis	
Crambidae	Prionapteryx nebulifera	most records from dunes; less frequent in
		non-dune dry prairies and pine barrens
Crambidae	Microcrambus elegans	
Crambidae	Neodactria sp.	
Crambidae	Chrysoteuchia topiarius	
Crambidae	Crambus albellus	
Lasiocampidae	Malacosoma americana	
Saturniidae	Hemileuca nevadensis	northwestern WI records are primarily
		from barrens with abundant prairie willow
		(Salix humilis) but occurs more widely in
		habitate ocn wetlands
Sphingidao	Smorinthus igmaicansis	
Goomotridaa	Sinerintilus juniaitensis	
Geometridae	Scopula inductata	
Geometridae	Scopula maactata	
Geometridae	Yantharhaa farrugata	
Geometridae	Anguitringlia nampingria	
Geometridae	Euchlagna johnsonaria	
Geometridae	Nepytia caposaria	
Geometridae	Prochogrades lingola	
Notodontidae	Clostera albosiama	
Notodontidae	Pheosia rimosa	
Notodontidae	Glunhisia sententrionis	
Notodontidae	Peridea anaulosa	
Notodontidae	lanassa lianicolor	
Frehidae	Dasychira basiflaya	
Frehidae	Oravia leucostiama	
Frehidae	Hypoprenia fucosa	
Frehidae	Manulea bicolor	
Frehidae	Crambidia nallida	
стериае	Crumbiala palliad	

Family	Species	Comments
Erebidae	Apantesis parthenice	
Erebidae	Phragmatobia assimilans	
Erebidae	Virbia aurantiaca	widespread in a variety of open habitats,
		esp. dry sandy ones
Erebidae	Virbia ferruginosa	
Erebidae	Idia americalis	
Erebidae	Idia aemula	
Erebidae	Idia rotundalis	
Erebidae	Zanclognatha marcidilinea	
Erebidae	Macrochilo orciferalis	
Erebidae	Phalaenostola metonalis	
Erebidae	Phalaenostola larentioides	
Erebidae	Bleptina caradrinalis	
Erebidae	Renia flavipunctalis	
Erebidae	Palthis angulalis	
Erebidae	Pangrapta decoralis	
Erebidae	Hypenodes sombrus	wetland specialist
Erebidae	Catocala antinympha	sweet fern (Comptonia peregrina)
		specialist; common in barrens, including
		barrens elements along roadsides, etc.
Erebidae	Catocala concumbens	
Erebidae	Catocala sordida	common in barrens, dry conifer woodlands,
		and peatlands with blueberries (Vaccinium)
Erebidae	Catocala blandula	
Erebidae	Catocala similis	most common in dry, often scrubby, oak
		(Quercus) habitats in WI, esp. barrens and
-		savannas
Noctuidae	Trichoplusia ni	
Noctuidae	Syngrapha rectangula	
Noctuidae	Acronicta funeralis	infrequently encountered
Noctuidae	Acronicta tritona	most frequently encountered in dry, often
		ericaceous habitats, esp. barrens
Noctuidae	Acronicta lithospila	Midwestern records from barrens, sand
		prairies, and dry savannas
Noctuidae	Acronicta impressa	
Noctuidae	Amphipyra pyramidoides	
Noctuidae	Sympistis dentata	
Noctuidae	Schinia florida	infrequently encountered; specialist on
		evening primroses (<i>Oenethera</i>)
Noctuidae	Callopistria cordata	
Noctuidae	Chytonix sensilis	Midwestern records from barrens, dunes,
Number 1915		and dry savannas
Noctuidae	Proxenus miranda	
Noctuidae	iveara ramosula	
Noctuidae	Apamea lignicolora	
Noctuidae	Apamea amputatrix	
Noctuidae	Apamea devastator	

Family	Species	Comments
Noctuidae	Lateroligia ophiogramma	
Noctuidae	Mesapamea fractilinea	
Noctuidae	Amphipoea sp.	
Noctuidae	Papaipema pterisii	
Noctuidae	Lithophane tepida	
Noctuidae	Lithophane grotei	
Noctuidae	Chaetaglaea cerata	Midwestern records from open barrens and
		some dry prairies; does not appear to
		persist in small barrens openings
Noctuidae	Chaetaglaea sericea	
Noctuidae	Xanthia tatago	
Noctuidae	Ipimorpha pleonectusa	
Noctuidae	Polia purpurissata	
Noctuidae	Sideridis maryx	primarily a barrens species, including small
		barrens openings in dry conifer woodlands
Noctuidae	Dargida diffusa	
Noctuidae	Mythimna unipuncta	
Noctuidae	Leucania commoides	
Noctuidae	Lacinipolia meditata	
Noctuidae	Lacinipolia sareta	most common in barrens and other dry
		open habitats
Noctuidae	Lacinipolia renigera	
Noctuidae	Peridroma saucia	
Noctuidae	Anicla forbesi	most common in barrens and other dry
		open habitats
Noctuidae	Striacosta albicosta	
Noctuidae	Feltia tricosa	
Noctuidae	Agrotis ipsilon	
Noctuidae	Eurois astricta	
Noctuidae	Anaplectoides prasina	
Noctuidae	Xestia c-nigrum	
Noctuidae	Abagrotis alternata	
Noctuidae	Abagrotis brunneipennis	most common in barrens, dry conifer
		woodlands, and other dry open habitats

Barrens and Prairie Management

Lepidoptera restricted to high-quality barrens (and other rare and/or isolated habitats) present a conundrum for land managers. On one hand, inaction will lead to woody encroachment and other habitat degradation. On the other hand, management can extirpate rare fauna. The trick is to balance these two facets, while bearing in mind that there is much we don't know.

To conserve rare fauna, one basic principle is to treat a portion of a given habitat at any one time, whether that be fire, mowing, or grazing. However, there is more complexity to this than simply

dividing a barrens into rotational burn units. The following three hypothetical management scenarios (using Barnes Barrens core area) illustrate three levels of complexity.

Figure 23. Management scenario 1. Barrens is a single management unit, burned at once. This scenario hypothetically results in the least diversity/abundance of barrens specialists, due to low diversity of ecological niches and less recolonization potential (fortunately, the large landscape of Barnes Barrens provides recolonization potential from outside the core area).

Figure 24. Management scenario 2. Barrens is divided into four management units, burned rotationally in different years. This scenario hypothetically results in intermediate diversity/abundance of barrens specialists.

Figure 25. Management scenario 3. Barrens is divided into multiple management units with different management regimes. Blue polygons are mow/mechanical methods only (no fire); yellow polygons are fire only (no mow/mechanical); small brown polygons are high intensity mowing areas (to replicate wildlife openings), remaning sections are mix of mow/mechanical methods and fire. This scenario hypothetically results in the greatest diversity/abundance of barrens specialists due to diversity of ecological niches, in addition to recolonization potential.

In the above examples, increasing the number of management units increases the potential for recolonization following management. But the third example also increases the number of *management regimes*, thereby increasing ecological diversity (different management techniques favor different flora and fauna). The idea is that a particular management technique – say fire – selects against species which can't survive that management technique (*Cladina* lichens, for example, do poorly with frequent burns). If a site is consistently managed with fire, fire-tolerant species will logically comprise the flora and fauna. If a site is consistently mowed, mowing-tolerant species will comprise the fauna, and this list will be different from the fire-tolerant one (with areas of overlap). If a site is consistently managed with are tolerant of both fire and mowing will comprise the fauna. While the third option may seem least diverse, it is plausible some species do best with both combined, so should be considered. Management frequency can add regime diversity, too. A barrens unit consistently burned every 1-3 years should yield different results than one burned every 5-7 years, in terms of both flora and fauna.

Theoretically, if a site is divided into different management units, and each of those managed units is managed differently and consistently, the site develops greater biodiversity potential since there are more niches to occupy. This concept is sometimes called "consistent diversity of management", as championed by Wisconsin lepidopterists Ann and Scott Swengel.

There is one "consistent diversity of management" practice particularly important to barrens and prairie fauna - long-term fire-free refugia. Refugia benefit Lepidoptera in a variety of Midwestern landscapes (e.g. Swengel & Swengel 2006). They are particularly important for species which are slow dispersers (thus frequent burn rotations might not allow sufficient time for recolonization) or those with demanding microhabitat preferences (frequent burn rotation units may not achieve optimal vegetation before the next burn, thus inhibiting recolonization; see Chryxus Arctic below). This concept can be expanded to other management types (e.g. refugia from grazing, mowing, or herbicides).

Landscape composition is another important consideration. Where are the nearest source habitats? If there are suitable habitat patches within a several mile radius, there may be a good chance of recolonization. Fortunately, Barrens Barrens is part of a large barrens landscape, which greatly increases recolonization potential (and readily explains the good results in the core area thus far). However, there is potential for rare, localized species (e.g. *Psectraglaea carnosa*, the Pink Sallow) which are vulnerable to extirpation.

The dramatic decline of Chryxus Arctic (*Oeneis chryxus*) in northern Wisconsin (REFS) underscores the importance of varied regimes in barrens management (Johnson 2019; Rutherford 2019, 2020, 2021, 2022, 2023; Rutherford & Johnson 2024). Prescribed fire has been a primary tool in barrens management across much of the state. Frequent fire has resulted in a "prairification" of boreal pine barrens, such as at Mott's Ravine SNA in Douglas County (Figure 26), 4.3 miles west of the Barnes Barrens core. The tall grass structure here is not tolerated by Chryxus Arctic, and likely many other animals as well. Sites managed strictly be mowing tend to have low-stature vegetation and floral diversity more consistent with boreal pine barrens; this vegetation type is becoming rare in northwestern Wisconsin. The Minnesuing Barrens in Douglas County (Figure 27), 6.6 miles west/southwest of the Barnes Barrens core, includes mowed areas on the periphery of a private airstrip; this site has not been surveyed for Chryxus Arctic but is one of the most promising options left in northwestern Wisconsin. At the very least, this site is proof that mowing alone can achieve fine barrens habitat and could add diversity to the management regimes at Barnes Barrens. The Bayfield County wildlife openings (see below) provide more examples of fine barrens habitat created by mowing alone.

While the above provides general guidance, each situation is unique, and there is no substitute for onthe-ground assessment and discussion.

Figure 26. Fire-managed barrens with relatively tall prairie grass structure, Mott's Ravine SNA, Douglas County (28 September 2024). This tall vegetation stature appears unsuitable for some rare barrens Lepidoptera, including the imperiled *Oeneis chryxus* (Chryxus Arctic). The "prairification" of barrens is common at sites with intensive fire management.

Figure 27. Low graminoid (blueberry-sweetfern) barrens in mowed clearing on the periphery of an airstrip, Minnesuing Barrens, Douglas County (28 September 2024). The low vegetation structure looks promising for many rare barrens Lepidoptera, including the imperiled *Oeneis chryxus* (Chryxus Arctic).

Bayfield County Wildlife Openings

Bayfield County manages hundreds of small wildlife openings throughout the county, but funding for their maintanance is dwindling. Which of these openings – if any – are worth maintaining into perpetuity?

Field surveys in 2024 only covered one set of these openings due to logistical contraints (namely two flat tires over two days!). Despite this, survey results combined with aerial photo analysis can give preliminary guidance.

The Banana Belt Pock Barrens (Figures 5, 28) clearly demonstrates that mowed openings can create excellent barrens with potential for rare species, especially the elusive *Psectraglaea carnosa* (Pink Sallow), a species of Special Concern in Wisconsin. This site also creates a link between Barnes Barrens and Bass Lake Barrens. Given these two factors combined with the county's focus on barrens habitat, this site would be top priority for continued management (continue with mowing, since that is what created these nice habitats in the first place).

Figure 28. Blueberry-low graminoid-sweetfern barrens in managed wildlife opening, Banana Belt Pocket Barrens (28 September 2024). The low vegetation stature looks promising for many rare barrens Lepidoptera; this section looks promising for the elusive *Psectraglaea carnosa* (Pink Sallow), a species of Special Concern in Wisconsin.

Aerial photographs reveal other areas worthy of consideration. Four focal areas are listed below; all need ground truthing to better assess their value.

1) Openings within Bass Lake Barrens: continue these as high-intensity mowing areas, to create brush-free areas within the complex.

2) Other barrens openings between Barnes and Bass Lake barrens to improve site connectivity: examples include 46.50930°N 91.50465°W and 46.53024°N 91.49208°W.

3) Boreal openings in the Lake Superior Clay Plain which have potential for unique boreal fauna; examples include 46.82730°N 91.16241°W, 46.66363°N 91.33029°W, and 46.69585°N 91.30028°W.

4) Barrens openings on the north end of Moquah Barrens, which have good potential for more boreal barrens fauna: examples include 46.76052°N 91.13030°W and 46.77563°N 91.06818°W.

Once sites have been ground truthed for habitat quality, targeted surveys may highlight some areas over others due to the presence of rare species (this could be for plants, insects, or other taxa). Another key consideration is logistics – how difficult are these sites to access and mow on a consistent basis? Clusters of sites make sense for logistic (and biological) reasons.

Future Surveys

Lepidoptera are the dominant herbivores in terrestrial ecosystems, both in terms of biodiversity and even biomass (Grimaldi & Engel, 2005). Research in the Great Lakes region (Hugo Kons Jr. and Ken Stead, pers. com.; pers. obs.) suggests that 1000-1500 species is a *low-end estimate* for diversity at a single sizeable site. Thus, a formidable amount of survey work remains. Barrens are treasure troves for rare species, and further surveys will undoubtedly yield more exciting finds. Surveys during different times of year will yield different suites of species. Barnes Barrens is the top priority area, but the wildlife openings (esp. Banana Belt Pocket Barrens) have good potential for rare species as well. Bass Lake Barrens would be interesting to explore, given it is in the early stages of restoration.

Further survey to increase our overall understanding of habitat specialist Lepidoptera fauna is still badly needed. Numerous species of conservation interest need more data to assess their habitat preferences and conservation needs. In particular, management sensitivity of most species is poorly understood. The importance of large vs. small barrens openings is also not well known.

References

Grimaldi, D. and Engel, M. S. 2005. Evolution of the Insects. Cambridge University Press, New York, New York.

Johnson, Kyle. 2019. Lepidoptera (Moths & Butterflies) of the Moquah Barrens, Chequamegon National Forest. USDA Forest Service Report. 32 pp.

Rutherford, R. D. 2019. Moquah Barrens Lepidoptera Surveys. Chequamegon National Forest. USDA Forest Service Report. 15 pp. Report Number: USFS 2019.1.

Rutherford, R.D. 2020. Lepidoptera and Bumble Bee Surveys in Maintained Openings in the Chequamegon National Forest. USDA Forest Service Report. 40 pp. Report Number: USFS 2020.1.

Rutherford, R.D. 2021. Surveys for Chryxus arctic (*Oeneis chryxus*) in a Northern Barrens Community in the Chequamegon-Nicolet National Forest, Bayfield County, Wisconsin. USDA Forest Service Report. 13 pp. Report Number: USFS 2021.1.

Rutherford, R.D. 2022. Surveys for a possibly extirpated butterfly, Chryxus arctic (*Oeneis chryxus*) in a Northern Barrens Community in the Chequamegon-Nicolet National Forest, Bayfield County, Wisconsin. USDA Forest Service Report. 13 pp. Report Number: USFS 2022.2.

Rutherford, R.D. 2023. Surveys for a possibly extirpated butterfly, Chryxus arctic (*Oeneis chryxus*) and other northern barrens specialist insects in the Chequamegon-Nicolet National Forest, Bayfield County, Wisconsin. USDA Forest Service Report. 10 pp. Report Number: USFS 2023.1

Rutherford, R.D. and Johnson, K.E., 2024. Surveys for Pollinators of Conservation Interest on the Moquah Barrens in the Chequamegon-Nicolet National Forest, Bayfield County, Wisconsin. USDA Forest Service Report. 11 pp. Report Number: USFS 2024.2.

Swengel, A. B., & Swengel, S. R. 2006. Benefit of permanent non-fire refugia for Lepidoptera conservation in fire-managed sites. Journal of Insect Conservation, 11(3), 263–279.